

First results at WIS

18.08.16

The first setup

The current setup

Gas system

Gas system was recalibrate "by hands".

We can claim 5-10% relative fraction accuracy

Unfortunately, two Aalborg flow controllers "went sick" and need replacement.

Started with: 80/20 Ar CO_2

Switched to: 90/10/5 Ne CO₂ N₂

Now running at 50 cc/min cannot lower in spite of Ne cost

Vlad Peskov TPC meeting Aug 18,2016

ALICE configuration

		lons blocker
10mm	Drift	
		GEM-1 standard
2mm	Transfer1	GEM-2, 280 μm pitch
2mm	Transfer 2	
2mm	Transfer 3	GEM-3, 280 μm pitch
		GEM-4, standard
3mm	Induction	

Element	Characteristics	Field, voltage
Drift	10 mm	0.4 kV/cm
GEM1	Standard (140 um)	270 V
Transfer 1	2 mm	4 kV/cm
GEM2	Long (280 um)	255 V
Transfer 2	2 mm	2 kV/cm
GEM 3	Long (280 um)	275 V
Transfer 3	2 mm	0.09 kV/cm
GEM 4	Standard (140 um)	355 V
Extraction	3 mm	4 kV/cm
Stack	Gain	1910

Vlad Peskov TPC meeting Aug 18,2016

pA currents example

Element Drift

GEM1 top

GEM1 bottom

GEM2 top

GEM2 bottom

GEM3 top

GEM3 bottom

GEM4 top

GEM4 bottom

Padplane

Vlad Peskov TPC meeting Aug 18,2016

Controlling all pA currents

Vlad Peskov TPC meeting Aug 18,2016 7

Measuring IBF

Element

Drift

GEM1 top

GEM1 bottom

GEM2 top

GEM2 bottom

GEM3 top

GEM3 bottom

GEM4 top

GEM4 bottom

Padplane

IBF=0.3/55=0.55%

TPC meeting Aug 18,2016

Pulse generator

Measuring gain and resolution

⁵⁵Fe

Energy resolution=13% sigma

IBF results

Element	Setup 1	Setup 2
Drift	0.4 kV/cm	0.4 kV/cm
GEM1	275 V	270 V
Transfer 1	4 kV/cm	4 kV/cm
GEM2	255 V	255 V
Transfer 2	2 kV/cm	2 kV/cm
GEM 3	270 V	275 V
Transfer 3	0.01 kV/cm	0.09 kV/cm
GEM 4	360 V	355 V
Extraction	4 kV/cm	4 kV/cm
Gain	2150	1910
Resolution	11%	13.5%
IBF	1%	0.55%

Vlad Peskov TPC meeting Aug 18,2016 10

Status and plans

- Setup with 10pA is running, plan to upgrade to 10+
- Moving pAs out of box we achieved good stability
- We succeeded to reproduce CERN data
- Next steps:
 - a. We can try to measure Ne / CF_4 / iC_4H_{10}
 - b. We can try adding another GEM layer
 - c. We can try small pitch GEM
 - d. We can try Cobra-GEM
 - e. We can add mesh between GEMs
 - f. Else?
- We cannot do it all before the review, let's pick one.
 - a. Is fast, can switch today. It requires to increase flow and that is expensive. How critical is to have 92 / 5 / 3 ratio?
 - b. other options require opening the box and finding new working point. That should cause some delay.

Vlad Peskov TPC meeting Aug 18,2016 11